theorem sappslam (B: set) (a: nat) {x: nat} (A: set x):
$ x = a -> A == B $ >
$ (\\ x, A) @@ a == B $;
Step | Hyp | Ref | Expression |
1 |
|
eqstr |
(\\ x, A) @@ a == S[a / x] A -> S[a / x] A == B -> (\\ x, A) @@ a == B |
2 |
|
sappslams |
(\\ x, A) @@ a == S[a / x] A |
3 |
1, 2 |
ax_mp |
S[a / x] A == B -> (\\ x, A) @@ a == B |
4 |
|
hyp h |
x = a -> A == B |
5 |
4 |
sbse |
S[a / x] A == B |
6 |
3, 5 |
ax_mp |
(\\ x, A) @@ a == B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)