theorem sappeq2d (_G: wff) (F: set) (_x1 _x2: nat): $ _G -> _x1 = _x2 $ > $ _G -> F @@ _x1 == F @@ _x2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 |
_G -> F == F |
||
2 |
hyp _h |
_G -> _x1 = _x2 |
|
3 |
_G -> F @@ _x1 == F @@ _x2 |