theorem sabeq {x: nat} (A B: set x): $ A. x A == B -> S\ x, A == S\ x, B $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          nfsbs1 | 
          FS/ x S[fst a1 / x] A  | 
        
        
          | 2 | 
           | 
          nfsbs1 | 
          FS/ x S[fst a1 / x] B  | 
        
        
          | 3 | 
          1, 2 | 
          nfeqs | 
          F/ x S[fst a1 / x] A == S[fst a1 / x] B  | 
        
        
          | 4 | 
           | 
          sbsq | 
          x = fst a1 -> A == S[fst a1 / x] A  | 
        
        
          | 5 | 
           | 
          sbsq | 
          x = fst a1 -> B == S[fst a1 / x] B  | 
        
        
          | 6 | 
          4, 5 | 
          eqseqd | 
          x = fst a1 -> (A == B <-> S[fst a1 / x] A == S[fst a1 / x] B)  | 
        
        
          | 7 | 
          3, 6 | 
          ealeh | 
          A. x A == B -> S[fst a1 / x] A == S[fst a1 / x] B  | 
        
        
          | 8 | 
          7 | 
          eleq2d | 
          A. x A == B -> (snd a1 e. S[fst a1 / x] A <-> snd a1 e. S[fst a1 / x] B)  | 
        
        
          | 9 | 
          8 | 
          abeqd | 
          A. x A == B -> {a1 | snd a1 e. S[fst a1 / x] A} == {a1 | snd a1 e. S[fst a1 / x] B} | 
        
        
          | 10 | 
          9 | 
          conv sab | 
          A. x A == B -> S\ x, A == S\ x, B  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)