theorem rlamfunc (B: set) (a: nat) {x: nat} (b: nat x):
$ func (\. x e. a, b) a B <-> A. x (x e. a -> b e. B) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(func (\. x e. a, b) a B <-> Ran (\. x e. a, b) C_ B) ->
(Ran (\. x e. a, b) C_ B <-> A. x (x e. a -> b e. B)) ->
(func (\. x e. a, b) a B <-> A. x (x e. a -> b e. B)) |
2 |
|
bian1 |
isfun (\. x e. a, b) /\ Dom (\. x e. a, b) == a -> (isfun (\. x e. a, b) /\ Dom (\. x e. a, b) == a /\ Ran (\. x e. a, b) C_ B <-> Ran (\. x e. a, b) C_ B) |
3 |
2 |
conv func |
isfun (\. x e. a, b) /\ Dom (\. x e. a, b) == a -> (func (\. x e. a, b) a B <-> Ran (\. x e. a, b) C_ B) |
4 |
|
ian |
isfun (\. x e. a, b) -> Dom (\. x e. a, b) == a -> isfun (\. x e. a, b) /\ Dom (\. x e. a, b) == a |
5 |
|
rlamisf |
isfun (\. x e. a, b) |
6 |
4, 5 |
ax_mp |
Dom (\. x e. a, b) == a -> isfun (\. x e. a, b) /\ Dom (\. x e. a, b) == a |
7 |
|
dmrlam |
Dom (\. x e. a, b) == a |
8 |
6, 7 |
ax_mp |
isfun (\. x e. a, b) /\ Dom (\. x e. a, b) == a |
9 |
3, 8 |
ax_mp |
func (\. x e. a, b) a B <-> Ran (\. x e. a, b) C_ B |
10 |
1, 9 |
ax_mp |
(Ran (\. x e. a, b) C_ B <-> A. x (x e. a -> b e. B)) -> (func (\. x e. a, b) a B <-> A. x (x e. a -> b e. B)) |
11 |
|
rlamrnss |
Ran (\. x e. a, b) C_ B <-> A. x (x e. a -> b e. B) |
12 |
10, 11 |
ax_mp |
func (\. x e. a, b) a B <-> A. x (x e. a -> b e. B) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)