Theorem rlameq2da | index | src |

theorem rlameq2da (G: wff) (a: nat) {x: nat} (v w: nat x):
  $ G /\ x e. a -> v = w $ >
  $ G -> \. x e. a, v = \. x e. a, w $;
StepHypRefExpression
1 rlameq2a
A. x (x e. a -> v = w) -> \. x e. a, v = \. x e. a, w
2 hyp h
G /\ x e. a -> v = w
3 2 ialda
G -> A. x (x e. a -> v = w)
4 1, 3 syl
G -> \. x e. a, v = \. x e. a, w

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)