theorem rlameq2da (G: wff) (a: nat) {x: nat} (v w: nat x):
$ G /\ x e. a -> v = w $ >
$ G -> \. x e. a, v = \. x e. a, w $;
Step | Hyp | Ref | Expression |
1 |
|
rlameq2a |
A. x (x e. a -> v = w) -> \. x e. a, v = \. x e. a, w |
2 |
|
hyp h |
G /\ x e. a -> v = w |
3 |
2 |
ialda |
G -> A. x (x e. a -> v = w) |
4 |
1, 3 |
syl |
G -> \. x e. a, v = \. x e. a, w |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)