theorem resv (F: set): $ F |` _V == F $;
Step | Hyp | Ref | Expression |
1 |
|
eqstr |
F |` _V == F i^i _V -> F i^i _V == F -> F |` _V == F |
2 |
|
ineq2 |
Xp _V _V == _V -> F i^i Xp _V _V == F i^i _V |
3 |
2 |
conv res |
Xp _V _V == _V -> F |` _V == F i^i _V |
4 |
|
xpvv |
Xp _V _V == _V |
5 |
3, 4 |
ax_mp |
F |` _V == F i^i _V |
6 |
1, 5 |
ax_mp |
F i^i _V == F -> F |` _V == F |
7 |
|
inv2 |
F i^i _V == F |
8 |
6, 7 |
ax_mp |
F |` _V == F |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)