theorem repeateq2d (_G: wff) (a _n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> repeat a _n1 = repeat a _n2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> a = a |
|
2 | hyp _h | _G -> _n1 = _n2 |
|
3 | 1, 2 | repeateqd | _G -> repeat a _n1 = repeat a _n2 |