theorem repeateq1d (_G: wff) (_a1 _a2 n: nat): $ _G -> _a1 = _a2 $ > $ _G -> repeat _a1 n = repeat _a2 n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> _a1 = _a2 |
|
2 | eqidd | _G -> n = n |
|
3 | 1, 2 | repeateqd | _G -> repeat _a1 n = repeat _a2 n |