theorem recnauxeq2d (_G: wff) (z: nat) (_S1 _S2: set) (n: nat): $ _G -> _S1 == _S2 $ > $ _G -> recnaux z _S1 n = recnaux z _S2 n $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | _G -> z = z |
|
| 2 | hyp _h | _G -> _S1 == _S2 |
|
| 3 | eqidd | _G -> n = n |
|
| 4 | 1, 2, 3 | recnauxeqd | _G -> recnaux z _S1 n = recnaux z _S2 n |