theorem receq2d (_G: wff) (z: nat) (_S1 _S2: set) (n: nat): $ _G -> _S1 == _S2 $ > $ _G -> rec z _S1 n = rec z _S2 n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> z = z |
|
2 | hyp _h | _G -> _S1 == _S2 |
|
3 | eqidd | _G -> n = n |
|
4 | 1, 2, 3 | receqd | _G -> rec z _S1 n = rec z _S2 n |