Theorem prlem1 | index | src |

theorem prlem1 (n: nat): $ 2 || n * suc n $;
StepHypRefExpression
1 dvdmul11
2 || n -> 2 || n * suc n
2 d2dvdS
2 || suc n <-> ~2 || n
3 dvdmul12
2 || suc n -> 2 || n * suc n
4 2, 3 sylbir
~2 || n -> 2 || n * suc n
5 1, 4 cases
2 || n * suc n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)