Theorem pi22pr | index | src |

theorem pi22pr (a b c: nat): $ pi22 (a, b, c) = c $;
StepHypRefExpression
1 eqtr
pi22 (a, b, c) = snd (b, c) -> snd (b, c) = c -> pi22 (a, b, c) = c
2 sndeq
snd (a, b, c) = b, c -> snd (snd (a, b, c)) = snd (b, c)
3 2 conv pi22
snd (a, b, c) = b, c -> pi22 (a, b, c) = snd (b, c)
4 sndpr
snd (a, b, c) = b, c
5 3, 4 ax_mp
pi22 (a, b, c) = snd (b, c)
6 1, 5 ax_mp
snd (b, c) = c -> pi22 (a, b, c) = c
7 sndpr
snd (b, c) = c
8 6, 7 ax_mp
pi22 (a, b, c) = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)