theorem pi221pr (a b c d: nat): $ pi221 (a, b, c, d) = c $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
pi221 (a, b, c, d) = fst (c, d) -> fst (c, d) = c -> pi221 (a, b, c, d) = c |
2 |
|
fsteq |
pi22 (a, b, c, d) = c, d -> fst (pi22 (a, b, c, d)) = fst (c, d) |
3 |
2 |
conv pi221 |
pi22 (a, b, c, d) = c, d -> pi221 (a, b, c, d) = fst (c, d) |
4 |
|
pi22pr |
pi22 (a, b, c, d) = c, d |
5 |
3, 4 |
ax_mp |
pi221 (a, b, c, d) = fst (c, d) |
6 |
1, 5 |
ax_mp |
fst (c, d) = c -> pi221 (a, b, c, d) = c |
7 |
|
fstpr |
fst (c, d) = c |
8 |
6, 7 |
ax_mp |
pi221 (a, b, c, d) = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)