theorem oddnat (p: wff): $ odd (nat p) <-> p $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(odd (nat p) <-> true (nat p)) -> (true (nat p) <-> p) -> (odd (nat p) <-> p) |
2 |
|
boolodd |
bool (nat p) -> (odd (nat p) <-> true (nat p)) |
3 |
|
boolnat |
bool (nat p) |
4 |
2, 3 |
ax_mp |
odd (nat p) <-> true (nat p) |
5 |
1, 4 |
ax_mp |
(true (nat p) <-> p) -> (odd (nat p) <-> p) |
6 |
|
truenat |
true (nat p) <-> p |
7 |
5, 6 |
ax_mp |
odd (nat p) <-> p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)