Theorem ocasepeq1d | index | src |

theorem ocasepeq1d (_G _z1 _z2: wff) (S: set):
  $ _G -> (_z1 <-> _z2) $ >
  $ _G -> ocasep _z1 S == ocasep _z2 S $;
StepHypRefExpression
1 hyp _h
_G -> (_z1 <-> _z2)
2 eqsidd
_G -> S == S
3 1, 2 ocasepeqd
_G -> ocasep _z1 S == ocasep _z2 S

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)