Theorem ocasepeq | index | src |

theorem ocasepeq (_z1 _z2: wff) (_S1 _S2: set):
  $ (_z1 <-> _z2) -> _S1 == _S2 -> ocasep _z1 _S1 == ocasep _z2 _S2 $;
StepHypRefExpression
1 anl
(_z1 <-> _z2) /\ _S1 == _S2 -> (_z1 <-> _z2)
2 anr
(_z1 <-> _z2) /\ _S1 == _S2 -> _S1 == _S2
3 1, 2 ocasepeqd
(_z1 <-> _z2) /\ _S1 == _S2 -> ocasep _z1 _S1 == ocasep _z2 _S2
4 3 exp
(_z1 <-> _z2) -> _S1 == _S2 -> ocasep _z1 _S1 == ocasep _z2 _S2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)