theorem ocaseeq2d (_G: wff) (z: nat) (_S1 _S2: set): $ _G -> _S1 == _S2 $ > $ _G -> ocase z _S1 == ocase z _S2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> z = z |
|
2 | hyp _h | _G -> _S1 == _S2 |
|
3 | 1, 2 | ocaseeqd | _G -> ocase z _S1 == ocase z _S2 |