theorem obindeq2d (_G: wff) (a: nat) (_F1 _F2: set): $ _G -> _F1 == _F2 $ > $ _G -> obind a _F1 = obind a _F2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | _G -> a = a |
|
2 | hyp _h | _G -> _F1 == _F2 |
|
3 | 1, 2 | obindeqd | _G -> obind a _F1 = obind a _F2 |