Theorem obindeq1d | index | src |

theorem obindeq1d (_G: wff) (_a1 _a2: nat) (F: set):
  $ _G -> _a1 = _a2 $ >
  $ _G -> obind _a1 F = obind _a2 F $;
StepHypRefExpression
1 hyp _h
_G -> _a1 = _a2
2 eqsidd
_G -> F == F
3 1, 2 obindeqd
_G -> obind _a1 F = obind _a2 F

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)