theorem obindeq1d (_G: wff) (_a1 _a2: nat) (F: set): $ _G -> _a1 = _a2 $ > $ _G -> obind _a1 F = obind _a2 F $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp _h | _G -> _a1 = _a2 |
|
| 2 | eqsidd | _G -> F == F |
|
| 3 | 1, 2 | obindeqd | _G -> obind _a1 F = obind _a2 F |