Theorem nfadd | index | src |

theorem nfadd {x: nat} (a b: nat x):
  $ FN/ x a $ >
  $ FN/ x b $ >
  $ FN/ x a + b $;
StepHypRefExpression
1 anl
y = a /\ z = b -> y = a
2 anr
y = a /\ z = b -> z = b
3 1, 2 addeqd
y = a /\ z = b -> y + z = a + b
4 hyp h1
FN/ x a
5 hyp h2
FN/ x b
6 3, 4, 5 nfnlem2
FN/ x a + b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (addeq)