theorem ltb1tr (a b: nat): $ a <= b $ > $ a < b1 b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttr | a <= b -> b < b1 b -> a < b1 b |
|
2 | hyp h | a <= b |
|
3 | 1, 2 | ax_mp | b < b1 b -> a < b1 b |
4 | b1ltid | b < b1 b |
|
5 | 3, 4 | ax_mp | a < b1 b |