theorem leb0tr (a b: nat): $ a <= b $ > $ a <= b0 b $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letr | a <= b -> b <= b0 b -> a <= b0 b |
|
| 2 | hyp h | a <= b |
|
| 3 | 1, 2 | ax_mp | b <= b0 b -> a <= b0 b |
| 4 | b0leid | b <= b0 b |
|
| 5 | 3, 4 | ax_mp | a <= b0 b |