theorem lreceq1d (_G: wff) (_z1 _z2: nat) (S: set) (n: nat): $ _G -> _z1 = _z2 $ > $ _G -> lrec _z1 S n = lrec _z2 S n $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hyp _h | _G -> _z1 = _z2 | |
| 2 | eqsidd | _G -> S == S | |
| 3 | eqidd | _G -> n = n | |
| 4 | 1, 2, 3 | lreceqd | _G -> lrec _z1 S n = lrec _z2 S n |