Theorem lecons2 | index | src |

theorem lecons2 (a b c: nat): $ b <= c <-> a : b <= a : c $;
StepHypRefExpression
1 bitr
(b <= c <-> a, b <= a, c) -> (a, b <= a, c <-> a : b <= a : c) -> (b <= c <-> a : b <= a : c)
2 lepr2
b <= c <-> a, b <= a, c
3 1, 2 ax_mp
(a, b <= a, c <-> a : b <= a : c) -> (b <= c <-> a : b <= a : c)
4 lesuc
a, b <= a, c <-> suc (a, b) <= suc (a, c)
5 4 conv cons
a, b <= a, c <-> a : b <= a : c
6 3, 5 ax_mp
b <= c <-> a : b <= a : c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)