theorem lecons2 (a b c: nat): $ b <= c <-> a : b <= a : c $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(b <= c <-> a, b <= a, c) -> (a, b <= a, c <-> a : b <= a : c) -> (b <= c <-> a : b <= a : c) |
2 |
|
lepr2 |
b <= c <-> a, b <= a, c |
3 |
1, 2 |
ax_mp |
(a, b <= a, c <-> a : b <= a : c) -> (b <= c <-> a : b <= a : c) |
4 |
|
lesuc |
a, b <= a, c <-> suc (a, b) <= suc (a, c) |
5 |
4 |
conv cons |
a, b <= a, c <-> a : b <= a : c |
6 |
3, 5 |
ax_mp |
b <= c <-> a : b <= a : c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)