Theorem lecons1 | index | src |

theorem lecons1 (a b c: nat): $ a <= b <-> a : c <= b : c $;
StepHypRefExpression
1 bitr
(a <= b <-> a, c <= b, c) -> (a, c <= b, c <-> a : c <= b : c) -> (a <= b <-> a : c <= b : c)
2 lepr1
a <= b <-> a, c <= b, c
3 1, 2 ax_mp
(a, c <= b, c <-> a : c <= b : c) -> (a <= b <-> a : c <= b : c)
4 lesuc
a, c <= b, c <-> suc (a, c) <= suc (b, c)
5 4 conv cons
a, c <= b, c <-> a : c <= b : c
6 3, 5 ax_mp
a <= b <-> a : c <= b : c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)