Theorem imeq1a | index | src |

theorem imeq1a (a b c: wff): $ (~c -> (a <-> b)) -> (a -> c <-> b -> c) $;
StepHypRefExpression
1 con3bi
a -> c <-> ~c -> ~a
2 con3bi
b -> c <-> ~c -> ~b
3 imeq2a
(~c -> (~a <-> ~b)) -> (~c -> ~a <-> ~c -> ~b)
4 noteq
(a <-> b) -> (~a <-> ~b)
5 4 imim2i
(~c -> (a <-> b)) -> ~c -> (~a <-> ~b)
6 3, 5 syl
(~c -> (a <-> b)) -> (~c -> ~a <-> ~c -> ~b)
7 1, 2, 6 bitr4g
(~c -> (a <-> b)) -> (a -> c <-> b -> c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)