Theorem imaeq2d | index | src |

theorem imaeq2d (_G: wff) (F _A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> F '' _A1 == F '' _A2 $;
StepHypRefExpression
1 eqsidd
_G -> F == F
2 hyp _h
_G -> _A1 == _A2
3 1, 2 imaeqd
_G -> F '' _A1 == F '' _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)