Theorem imaeq1d | index | src |

theorem imaeq1d (_G: wff) (_F1 _F2 A: set):
  $ _G -> _F1 == _F2 $ >
  $ _G -> _F1 '' A == _F2 '' A $;
StepHypRefExpression
1 hyp _h
_G -> _F1 == _F2
2 eqsidd
_G -> A == A
3 1, 2 imaeqd
_G -> _F1 '' A == _F2 '' A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)