theorem funcsn2 (F: set) (a b: nat) {x: nat}:
$ func F a (sn b) <-> F == \. x e. a, b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(func F a (sn b) <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b)) ->
(F == \. x e. a, b <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b)) ->
(func F a (sn b) <-> F == \. x e. a, b) |
2 |
|
funcal |
func F a (sn b) <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b) |
3 |
1, 2 |
ax_mp |
(F == \. x e. a, b <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b)) -> (func F a (sn b) <-> F == \. x e. a, b) |
4 |
|
bitr4 |
(F == \. x e. a, b <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x = b)) ->
(isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b) <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x = b)) ->
(F == \. x e. a, b <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b)) |
5 |
|
eqsrlam |
F == \. x e. a, b <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x = b) |
6 |
4, 5 |
ax_mp |
(isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b) <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x = b)) ->
(F == \. x e. a, b <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b)) |
7 |
|
elsn |
F @ x e. sn b <-> F @ x = b |
8 |
7 |
imeq2i |
x e. a -> F @ x e. sn b <-> x e. a -> F @ x = b |
9 |
8 |
aleqi |
A. x (x e. a -> F @ x e. sn b) <-> A. x (x e. a -> F @ x = b) |
10 |
9 |
aneq2i |
isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b) <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x = b) |
11 |
6, 10 |
ax_mp |
F == \. x e. a, b <-> isfun F /\ Dom F == a /\ A. x (x e. a -> F @ x e. sn b) |
12 |
3, 11 |
ax_mp |
func F a (sn b) <-> F == \. x e. a, b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)