theorem funceqd (_G: wff) (_F1 _F2 _A1 _A2 _B1 _B2: set):
$ _G -> _F1 == _F2 $ >
$ _G -> _A1 == _A2 $ >
$ _G -> _B1 == _B2 $ >
$ _G -> (func _F1 _A1 _B1 <-> func _F2 _A2 _B2) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _Fh |
_G -> _F1 == _F2 |
2 |
1 |
isfeqd |
_G -> (isfun _F1 <-> isfun _F2) |
3 |
1 |
dmeqd |
_G -> Dom _F1 == Dom _F2 |
4 |
|
hyp _Ah |
_G -> _A1 == _A2 |
5 |
3, 4 |
eqseqd |
_G -> (Dom _F1 == _A1 <-> Dom _F2 == _A2) |
6 |
2, 5 |
aneqd |
_G -> (isfun _F1 /\ Dom _F1 == _A1 <-> isfun _F2 /\ Dom _F2 == _A2) |
7 |
1 |
rneqd |
_G -> Ran _F1 == Ran _F2 |
8 |
|
hyp _Bh |
_G -> _B1 == _B2 |
9 |
7, 8 |
sseqd |
_G -> (Ran _F1 C_ _B1 <-> Ran _F2 C_ _B2) |
10 |
6, 9 |
aneqd |
_G -> (isfun _F1 /\ Dom _F1 == _A1 /\ Ran _F1 C_ _B1 <-> isfun _F2 /\ Dom _F2 == _A2 /\ Ran _F2 C_ _B2) |
11 |
10 |
conv func |
_G -> (func _F1 _A1 _B1 <-> func _F2 _A2 _B2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)