theorem finlamh {x: nat} (A: set x) (v: nat x): $ finite A -> finite ((\ x, v) |` A) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
3 |
\ x, v == \ a1, N[a1 / x] v |
||
4 |
(\ x, v) |` A == (\ a1, N[a1 / x] v) |` A |
||
5 |
finite ((\ x, v) |` A) <-> finite ((\ a1, N[a1 / x] v) |` A) |
||
6 |
finite A -> finite ((\ a1, N[a1 / x] v) |` A) |
||
7 |
finite A -> finite ((\ x, v) |` A) |