theorem elall22 (R: set) (l1 l2: nat) {n x y: nat}:
$ l1, l2 e. all2 R <->
len l1 = len l2 /\
A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R)) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(l1, l2 e. all2 R <-> len l1 = len l2 /\ A. n A. x A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R)) ->
(len l1 = len l2 /\ A. n A. x A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R) <->
len l1 = len l2 /\ A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R))) ->
(l1, l2 e. all2 R <-> len l1 = len l2 /\ A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R))) |
2 |
|
elall2 |
l1, l2 e. all2 R <-> len l1 = len l2 /\ A. n A. x A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R) |
3 |
1, 2 |
ax_mp |
(len l1 = len l2 /\ A. n A. x A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R) <->
len l1 = len l2 /\ A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R))) ->
(l1, l2 e. all2 R <-> len l1 = len l2 /\ A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R))) |
4 |
|
alim1 |
A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R) <-> nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R) |
5 |
4 |
aleqi |
A. x A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R) <-> A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R)) |
6 |
5 |
aleqi |
A. n A. x A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R) <-> A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R)) |
7 |
6 |
aneq2i |
len l1 = len l2 /\ A. n A. x A. y (nth n l1 = suc x -> nth n l2 = suc y -> x, y e. R) <->
len l1 = len l2 /\ A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R)) |
8 |
3, 7 |
ax_mp |
l1, l2 e. all2 R <-> len l1 = len l2 /\ A. n A. x (nth n l1 = suc x -> A. y (nth n l2 = suc y -> x, y e. R)) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)