theorem dvdbgcdb (a b d: nat): $ a != 0 -> (d || bgcd a b <-> d || a /\ d || b) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 |
d || bgcd a b -> bgcd a b || a -> d || a |
||
2 |
a != 0 /\ d || bgcd a b -> d || bgcd a b |
||
3 |
bgcd a b || a |
||
4 |
a != 0 /\ d || bgcd a b -> bgcd a b || a |
||
5 |
a != 0 /\ d || bgcd a b -> d || a |
||
6 |
d || bgcd a b -> bgcd a b || b -> d || b |
||
7 |
a != 0 -> bgcd a b || b |
||
8 |
a != 0 /\ d || bgcd a b -> bgcd a b || b |
||
9 |
a != 0 /\ d || bgcd a b -> d || b |
||
10 |
a != 0 /\ d || bgcd a b -> d || a /\ d || b |
||
11 |
a != 0 -> d || bgcd a b -> d || a /\ d || b |
||
12 |
d || a /\ d || b -> d || bgcd a b |
||
13 |
a != 0 -> d || a /\ d || b -> d || bgcd a b |
||
14 |
a != 0 -> (d || bgcd a b <-> d || a /\ d || b) |