Theorem dvdbgcdb | index | src |

theorem dvdbgcdb (a b d: nat):
  $ a != 0 -> (d || bgcd a b <-> d || a /\ d || b) $;
StepHypRefExpression
1 dvdtr
d || bgcd a b -> bgcd a b || a -> d || a
2 anr
a != 0 /\ d || bgcd a b -> d || bgcd a b
3 bgcddvd1
bgcd a b || a
4 3 a1i
a != 0 /\ d || bgcd a b -> bgcd a b || a
5 1, 2, 4 sylc
a != 0 /\ d || bgcd a b -> d || a
6 dvdtr
d || bgcd a b -> bgcd a b || b -> d || b
7 bgcddvd2
a != 0 -> bgcd a b || b
8 7 anwl
a != 0 /\ d || bgcd a b -> bgcd a b || b
9 6, 2, 8 sylc
a != 0 /\ d || bgcd a b -> d || b
10 5, 9 iand
a != 0 /\ d || bgcd a b -> d || a /\ d || b
11 10 exp
a != 0 -> d || bgcd a b -> d || a /\ d || b
12 dvdbgcd
d || a /\ d || b -> d || bgcd a b
13 12 a1i
a != 0 -> d || a /\ d || b -> d || bgcd a b
14 11, 13 ibid
a != 0 -> (d || bgcd a b <-> d || a /\ d || b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)