theorem divlteq0 (a b: nat): $ a < b -> a // b = 0 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          id | 
          a < b -> a < b  | 
        
        
          | 2 | 
           | 
          eqtr | 
          b * 0 + a = 0 + a -> 0 + a = a -> b * 0 + a = a  | 
        
        
          | 3 | 
           | 
          addeq1 | 
          b * 0 = 0 -> b * 0 + a = 0 + a  | 
        
        
          | 4 | 
           | 
          mul02 | 
          b * 0 = 0  | 
        
        
          | 5 | 
          3, 4 | 
          ax_mp | 
          b * 0 + a = 0 + a  | 
        
        
          | 6 | 
          2, 5 | 
          ax_mp | 
          0 + a = a -> b * 0 + a = a  | 
        
        
          | 7 | 
           | 
          add01 | 
          0 + a = a  | 
        
        
          | 8 | 
          6, 7 | 
          ax_mp | 
          b * 0 + a = a  | 
        
        
          | 9 | 
          8 | 
          a1i | 
          a < b -> b * 0 + a = a  | 
        
        
          | 10 | 
          1, 9 | 
          eqdivmod | 
          a < b -> a // b = 0 /\ a % b = a  | 
        
        
          | 11 | 
          10 | 
          anld | 
          a < b -> a // b = 0  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)