Theorem divlteq0 | index | src |

theorem divlteq0 (a b: nat): $ a < b -> a // b = 0 $;
StepHypRefExpression
1 id
a < b -> a < b
2 eqtr
b * 0 + a = 0 + a -> 0 + a = a -> b * 0 + a = a
3 addeq1
b * 0 = 0 -> b * 0 + a = 0 + a
4 mul02
b * 0 = 0
5 3, 4 ax_mp
b * 0 + a = 0 + a
6 2, 5 ax_mp
0 + a = a -> b * 0 + a = a
7 add01
0 + a = a
8 6, 7 ax_mp
b * 0 + a = a
9 8 a1i
a < b -> b * 0 + a = a
10 1, 9 eqdivmod
a < b -> a // b = 0 /\ a % b = a
11 10 anld
a < b -> a // b = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)