theorem disjne (A B: set) (G: wff) (x y: nat):
$ G -> A i^i B == 0 $ >
$ G -> x e. A $ >
$ G -> y e. B $ >
$ G -> x != y $;
Step | Hyp | Ref | Expression |
1 |
|
el02 |
~y e. 0 |
2 |
|
hyp h1 |
G -> A i^i B == 0 |
3 |
2 |
anwl |
G /\ x = y -> A i^i B == 0 |
4 |
3 |
eleq2d |
G /\ x = y -> (y e. A i^i B <-> y e. 0) |
5 |
|
elin |
y e. A i^i B <-> y e. A /\ y e. B |
6 |
|
anr |
G /\ x = y -> x = y |
7 |
6 |
eleq1d |
G /\ x = y -> (x e. A <-> y e. A) |
8 |
|
hyp h2 |
G -> x e. A |
9 |
8 |
anwl |
G /\ x = y -> x e. A |
10 |
7, 9 |
mpbid |
G /\ x = y -> y e. A |
11 |
|
hyp h3 |
G -> y e. B |
12 |
11 |
anwl |
G /\ x = y -> y e. B |
13 |
10, 12 |
iand |
G /\ x = y -> y e. A /\ y e. B |
14 |
5, 13 |
sylibr |
G /\ x = y -> y e. A i^i B |
15 |
4, 14 |
mpbid |
G /\ x = y -> y e. 0 |
16 |
15 |
exp |
G -> x = y -> y e. 0 |
17 |
16 |
con3d |
G -> ~y e. 0 -> ~x = y |
18 |
17 |
conv ne |
G -> ~y e. 0 -> x != y |
19 |
1, 18 |
mpi |
G -> x != y |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)