Theorem disjne | index | src |

theorem disjne (A B: set) (G: wff) (x y: nat):
  $ G -> A i^i B == 0 $ >
  $ G -> x e. A $ >
  $ G -> y e. B $ >
  $ G -> x != y $;
StepHypRefExpression
1 el02
~y e. 0
2 hyp h1
G -> A i^i B == 0
3 2 anwl
G /\ x = y -> A i^i B == 0
4 3 eleq2d
G /\ x = y -> (y e. A i^i B <-> y e. 0)
5 elin
y e. A i^i B <-> y e. A /\ y e. B
6 anr
G /\ x = y -> x = y
7 6 eleq1d
G /\ x = y -> (x e. A <-> y e. A)
8 hyp h2
G -> x e. A
9 8 anwl
G /\ x = y -> x e. A
10 7, 9 mpbid
G /\ x = y -> y e. A
11 hyp h3
G -> y e. B
12 11 anwl
G /\ x = y -> y e. B
13 10, 12 iand
G /\ x = y -> y e. A /\ y e. B
14 5, 13 sylibr
G /\ x = y -> y e. A i^i B
15 4, 14 mpbid
G /\ x = y -> y e. 0
16 15 exp
G -> x = y -> y e. 0
17 16 con3d
G -> ~y e. 0 -> ~x = y
18 17 conv ne
G -> ~y e. 0 -> x != y
19 1, 18 mpi
G -> x != y

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)