Theorem cplv | index | src |

theorem cplv: $ Compl _V == 0 $;
StepHypRefExpression
1 binth
~x e. Compl _V -> ~x e. 0 -> (x e. Compl _V <-> x e. 0)
2 con2
(x e. Compl _V -> ~x e. _V) -> x e. _V -> ~x e. Compl _V
3 bi1
(x e. Compl _V <-> ~x e. _V) -> x e. Compl _V -> ~x e. _V
4 elcpl
x e. Compl _V <-> ~x e. _V
5 3, 4 ax_mp
x e. Compl _V -> ~x e. _V
6 2, 5 ax_mp
x e. _V -> ~x e. Compl _V
7 elv
x e. _V
8 6, 7 ax_mp
~x e. Compl _V
9 1, 8 ax_mp
~x e. 0 -> (x e. Compl _V <-> x e. 0)
10 el02
~x e. 0
11 9, 10 ax_mp
x e. Compl _V <-> x e. 0
12 11 eqri
Compl _V == 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)