theorem consinj (a b c d: nat): $ a : c = b : d <-> a = b /\ c = d $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a : c = b : d <-> a, c = b, d) -> (a, c = b, d <-> a = b /\ c = d) -> (a : c = b : d <-> a = b /\ c = d) |
2 |
|
peano2 |
suc (a, c) = suc (b, d) <-> a, c = b, d |
3 |
2 |
conv cons |
a : c = b : d <-> a, c = b, d |
4 |
1, 3 |
ax_mp |
(a, c = b, d <-> a = b /\ c = d) -> (a : c = b : d <-> a = b /\ c = d) |
5 |
|
prth |
a, c = b, d <-> a = b /\ c = d |
6 |
4, 5 |
ax_mp |
a : c = b : d <-> a = b /\ c = d |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)