Theorem conscan1 | index | src |

theorem conscan1 (a b c: nat): $ a : c = b : c <-> a = b $;
StepHypRefExpression
1 bitr
(a : c = b : c <-> a = b /\ c = c) -> (a = b /\ c = c <-> a = b) -> (a : c = b : c <-> a = b)
2 consinj
a : c = b : c <-> a = b /\ c = c
3 1, 2 ax_mp
(a = b /\ c = c <-> a = b) -> (a : c = b : c <-> a = b)
4 bian2
c = c -> (a = b /\ c = c <-> a = b)
5 eqid
c = c
6 4, 5 ax_mp
a = b /\ c = c <-> a = b
7 3, 6 ax_mp
a : c = b : c <-> a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)