Theorem conscan2 | index | src |

theorem conscan2 (a b c: nat): $ a : b = a : c <-> b = c $;
StepHypRefExpression
1 bitr
(a : b = a : c <-> a = a /\ b = c) -> (a = a /\ b = c <-> b = c) -> (a : b = a : c <-> b = c)
2 consinj
a : b = a : c <-> a = a /\ b = c
3 1, 2 ax_mp
(a = a /\ b = c <-> b = c) -> (a : b = a : c <-> b = c)
4 bian1
a = a -> (a = a /\ b = c <-> b = c)
5 eqid
a = a
6 4, 5 ax_mp
a = a /\ b = c <-> b = c
7 3, 6 ax_mp
a : b = a : c <-> b = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)