Theorem coeq2d | index | src |

theorem coeq2d (_G: wff) (F _G1 _G2: set):
  $ _G -> _G1 == _G2 $ >
  $ _G -> F o> _G1 == F o> _G2 $;
StepHypRefExpression
1 eqsidd
_G -> F == F
2 hyp _h
_G -> _G1 == _G2
3 1, 2 coeqd
_G -> F o> _G1 == F o> _G2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)