Theorem birexan2i | index | src |

theorem birexan2i (a: wff) {x: nat} (p b c: wff x):
  $ b <-> E. x (p /\ c) $ >
  $ a /\ b <-> E. x (p /\ (a /\ c)) $;
StepHypRefExpression
1 hyp h
b <-> E. x (p /\ c)
2 1 a1i
a -> (b <-> E. x (p /\ c))
3 2 birexan2a
a /\ b <-> E. x (p /\ (a /\ c))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)