theorem birexan2i (a: wff) {x: nat} (p b c: wff x):
$ b <-> E. x (p /\ c) $ >
$ a /\ b <-> E. x (p /\ (a /\ c)) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | b <-> E. x (p /\ c) |
|
| 2 | 1 | a1i | a -> (b <-> E. x (p /\ c)) |
| 3 | 2 | birexan2a | a /\ b <-> E. x (p /\ (a /\ c)) |