theorem birexan1i (c: wff) {x: nat} (p a b: wff x):
$ a <-> E. x (p /\ b) $ >
$ a /\ c <-> E. x (p /\ (b /\ c)) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | a <-> E. x (p /\ b) |
|
| 2 | 1 | a1i | c -> (a <-> E. x (p /\ b)) |
| 3 | 2 | birexan1a | a /\ c <-> E. x (p /\ (b /\ c)) |