theorem birexan1i (c: wff) {x: nat} (p a b: wff x): $ a <-> E. x (p /\ b) $ > $ a /\ c <-> E. x (p /\ (b /\ c)) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h | a <-> E. x (p /\ b) |
|
2 | 1 | a1i | c -> (a <-> E. x (p /\ b)) |
3 | 2 | birexan1a | a /\ c <-> E. x (p /\ (b /\ c)) |