Theorem birexan1i | index | src |

theorem birexan1i (c: wff) {x: nat} (p a b: wff x):
  $ a <-> E. x (p /\ b) $ >
  $ a /\ c <-> E. x (p /\ (b /\ c)) $;
StepHypRefExpression
1 hyp h
a <-> E. x (p /\ b)
2 1 a1i
c -> (a <-> E. x (p /\ b))
3 2 birexan1a
a /\ c <-> E. x (p /\ (b /\ c))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)