Theorem bian2exi | index | src |

theorem bian2exi (c: wff) {x: nat} (a b: wff x):
  $ a <-> b /\ c $ >
  $ E. x a <-> E. x b /\ c $;
StepHypRefExpression
1 bitr
(E. x a <-> E. x (b /\ c)) -> (E. x (b /\ c) <-> E. x b /\ c) -> (E. x a <-> E. x b /\ c)
2 hyp h
a <-> b /\ c
3 2 exeqi
E. x a <-> E. x (b /\ c)
4 1, 3 ax_mp
(E. x (b /\ c) <-> E. x b /\ c) -> (E. x a <-> E. x b /\ c)
5 exan2
E. x (b /\ c) <-> E. x b /\ c
6 4, 5 ax_mp
E. x a <-> E. x b /\ c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)