Theorem bian12i | index | src |

theorem bian12i (a b c d: wff): $ a <-> b /\ c $ > $ d /\ a <-> b /\ (d /\ c) $;
StepHypRefExpression
1 bitr
(d /\ a <-> d /\ (b /\ c)) -> (d /\ (b /\ c) <-> b /\ (d /\ c)) -> (d /\ a <-> b /\ (d /\ c))
2 hyp h
a <-> b /\ c
3 2 aneq2i
d /\ a <-> d /\ (b /\ c)
4 1, 3 ax_mp
(d /\ (b /\ c) <-> b /\ (d /\ c)) -> (d /\ a <-> b /\ (d /\ c))
5 anlass
d /\ (b /\ c) <-> b /\ (d /\ c)
6 4, 5 ax_mp
d /\ a <-> b /\ (d /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)