theorem b1leb0 (a b: nat): $ b1 a <= b0 b <-> a < b $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr4 |
(b1 a <= b0 b <-> ~b0 b < b1 a) -> (a < b <-> ~b0 b < b1 a) -> (b1 a <= b0 b <-> a < b) |
| 2 |
|
lenlt |
b1 a <= b0 b <-> ~b0 b < b1 a |
| 3 |
1, 2 |
ax_mp |
(a < b <-> ~b0 b < b1 a) -> (b1 a <= b0 b <-> a < b) |
| 4 |
|
bitr4 |
(a < b <-> ~b <= a) -> (~b0 b < b1 a <-> ~b <= a) -> (a < b <-> ~b0 b < b1 a) |
| 5 |
|
ltnle |
a < b <-> ~b <= a |
| 6 |
4, 5 |
ax_mp |
(~b0 b < b1 a <-> ~b <= a) -> (a < b <-> ~b0 b < b1 a) |
| 7 |
|
noteq |
(b0 b < b1 a <-> b <= a) -> (~b0 b < b1 a <-> ~b <= a) |
| 8 |
|
b0ltb1 |
b0 b < b1 a <-> b <= a |
| 9 |
7, 8 |
ax_mp |
~b0 b < b1 a <-> ~b <= a |
| 10 |
6, 9 |
ax_mp |
a < b <-> ~b0 b < b1 a |
| 11 |
3, 10 |
ax_mp |
b1 a <= b0 b <-> a < b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)