Theorem b0leb1 | index | src |

theorem b0leb1 (a b: nat): $ b0 a <= b1 b <-> a <= b $;
StepHypRefExpression
1 bitr4
(b0 a <= b1 b <-> ~b1 b < b0 a) -> (a <= b <-> ~b1 b < b0 a) -> (b0 a <= b1 b <-> a <= b)
2 lenlt
b0 a <= b1 b <-> ~b1 b < b0 a
3 1, 2 ax_mp
(a <= b <-> ~b1 b < b0 a) -> (b0 a <= b1 b <-> a <= b)
4 bitr4
(a <= b <-> ~b < a) -> (~b1 b < b0 a <-> ~b < a) -> (a <= b <-> ~b1 b < b0 a)
5 lenlt
a <= b <-> ~b < a
6 4, 5 ax_mp
(~b1 b < b0 a <-> ~b < a) -> (a <= b <-> ~b1 b < b0 a)
7 noteq
(b1 b < b0 a <-> b < a) -> (~b1 b < b0 a <-> ~b < a)
8 b1ltb0
b1 b < b0 a <-> b < a
9 7, 8 ax_mp
~b1 b < b0 a <-> ~b < a
10 6, 9 ax_mp
a <= b <-> ~b1 b < b0 a
11 3, 10 ax_mp
b0 a <= b1 b <-> a <= b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)