Theorem b0lt | index | src |

theorem b0lt (a b: nat): $ a < b <-> b0 a < b0 b $;
StepHypRefExpression
1 bitr
(a < b <-> 2 * a < 2 * b) -> (2 * a < 2 * b <-> b0 a < b0 b) -> (a < b <-> b0 a < b0 b)
2 ltmul2
0 < 2 -> (a < b <-> 2 * a < 2 * b)
3 d0lt2
0 < 2
4 2, 3 ax_mp
a < b <-> 2 * a < 2 * b
5 1, 4 ax_mp
(2 * a < 2 * b <-> b0 a < b0 b) -> (a < b <-> b0 a < b0 b)
6 lteq
2 * a = b0 a -> 2 * b = b0 b -> (2 * a < 2 * b <-> b0 a < b0 b)
7 b0mul21
2 * a = b0 a
8 6, 7 ax_mp
2 * b = b0 b -> (2 * a < 2 * b <-> b0 a < b0 b)
9 b0mul21
2 * b = b0 b
10 8, 9 ax_mp
2 * a < 2 * b <-> b0 a < b0 b
11 5, 10 ax_mp
a < b <-> b0 a < b0 b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)