Theorem allsnoc | index | src |

theorem allsnoc (A: set) (a b: nat): $ all A (a |> b) <-> all A a /\ b e. A $;
StepHypRefExpression
1 bitr
(all A (a |> b) <-> all A a /\ all A (b : 0)) -> (all A a /\ all A (b : 0) <-> all A a /\ b e. A) -> (all A (a |> b) <-> all A a /\ b e. A)
2 allappend
all A (a ++ b : 0) <-> all A a /\ all A (b : 0)
3 2 conv snoc
all A (a |> b) <-> all A a /\ all A (b : 0)
4 1, 3 ax_mp
(all A a /\ all A (b : 0) <-> all A a /\ b e. A) -> (all A (a |> b) <-> all A a /\ b e. A)
5 all1
all A (b : 0) <-> b e. A
6 5 aneq2i
all A a /\ all A (b : 0) <-> all A a /\ b e. A
7 4, 6 ax_mp
all A (a |> b) <-> all A a /\ b e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)