theorem alleq1d (_G: wff) (_A1 _A2: set) (l: nat): $ _G -> _A1 == _A2 $ > $ _G -> (all _A1 l <-> all _A2 l) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _h | _G -> _A1 == _A2 |
|
2 | eqidd | _G -> l = l |
|
3 | 1, 2 | alleqd | _G -> (all _A1 l <-> all _A2 l) |