Theorem addb10 | index | src |

theorem addb10 (a b: nat): $ b1 a + b0 b = b1 (a + b) $;
StepHypRefExpression
1 eqtr
b1 a + b0 b = b0 b + b1 a -> b0 b + b1 a = b1 (a + b) -> b1 a + b0 b = b1 (a + b)
2 addcom
b1 a + b0 b = b0 b + b1 a
3 1, 2 ax_mp
b0 b + b1 a = b1 (a + b) -> b1 a + b0 b = b1 (a + b)
4 eqtr
b0 b + b1 a = b1 (b + a) -> b1 (b + a) = b1 (a + b) -> b0 b + b1 a = b1 (a + b)
5 addb01
b0 b + b1 a = b1 (b + a)
6 4, 5 ax_mp
b1 (b + a) = b1 (a + b) -> b0 b + b1 a = b1 (a + b)
7 b1eq
b + a = a + b -> b1 (b + a) = b1 (a + b)
8 addcom
b + a = a + b
9 7, 8 ax_mp
b1 (b + a) = b1 (a + b)
10 6, 9 ax_mp
b0 b + b1 a = b1 (a + b)
11 3, 10 ax_mp
b1 a + b0 b = b1 (a + b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)